Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) measures changes in the concentration of an administered contrast agent to quantitatively evaluate blood circulation in a tumor or normal tissues. This method uses a pharmacokinetic analysis based on the time course of a reference region, such as muscle, rather than arterial input function. However, it is difficult to manually define a homogeneous reference region. In the present study, we developed a method for automatic extraction of the reference region using a clustering algorithm based on a time course pattern for DCE-MRI studies of patients with prostate cancer.

Two feature values related to the shape of the time course were extracted from the time course of all voxels in the DCE-MRI images. Each voxel value of T1-weighted images acquired before administration were also added as anatomical data. Using this three-dimensional feature vector, all voxels were segmented into five clusters by the Gaussian mixture model, and one of these clusters that included the gluteus muscle was selected as the reference region.

Each region of arterial vessel, muscle, and fat was segmented as a different cluster from the tumor and normal tissues in the prostate. In the extracted reference region, other tissue elements including scattered fat and blood vessels were removed from the muscle region.

Our proposed method can automatically extract the reference region using the clustering algorithm with three types of features based on the time course pattern and anatomical data. This method may be useful for evaluating tumor circulatory function in DCE-MRI studies.

Magnetic resonance imaging. 2019 Sep 02 [Epub ahead of print]

Yoko Ikoma, Riwa Kishimoto, Yasuhiko Tachibana, Tokuhiko Omatsu, Goro Kasuya, Hirokazu Makishima, Tatsuya Higashi, Takayuki Obata, Hiroshi Tsuji

Department of Molecular Imaging and Theranostics, National Institute of Radiological Sciences, QST, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan., Department of Charged Particle Therapy Research, National Institute of Radiological Sciences, QST, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan., Department of Molecular Imaging and Theranostics, National Institute of Radiological Sciences, QST, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan. Electronic address: .

X